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ABSTRACT
Semiconductor quantum dots (QDs) have shown great promise as fluorescent probes for molecular, cellular 
and in vivo imaging. However, the fluorescence of traditional polymer-encapsulated QDs is often quenched 
by proton-induced etching in acidic environments. This is a major problem for applications of QDs in the 
gastrointestinal tract because the gastric (stomach) environment is strongly acidic (pH 1 2). Here we report 
the use of proton-resistant surface coatings to stabilize QD fl uorescence under acidic conditions. Using both 
hyperbranched polyethylenimine (PEI) and its polyethylene glycol derivative (PEG-grafted PEI), we show that 
the fl uorescence of core shell CdSe /CdS /ZnS QDs is effectively protected from quenching in simulated gastric 
fluids. In comparison, amphiphilic lipid or polymer coatings provide no protection under similarly acidic 
conditions. The proton-resistant QDs are found to cause moderate membrane damage to cultured epithelial 
cells, but PEGylation (PEG grafting) can be used to reduce cellular toxicity and to improve nanoparticle 
stability. 
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Introduction

Semiconductor quantum dots (QDs) are a new class 
of fluorescent labels under intensive research and 
development for broad applications in molecular, 
cellular, and in vivo imaging [1 4]. This intense 
interest arises from their unique electronic and optical 
properties, such as size- and composition-tunable 
fl uorescence emission, large absorption cross sections, 
and exceptional brightness and photostability. 
Recent advances have led to the development of 
bright and stable QDs by using highly crystalline 

cores and a variety of surface coating materials [4]. 
The most common coatings include amphiphilic 
polymers [5, 6], amphiphilic lipids [7], hydrophilic 
thiols [8], and multidentate coordinating ligands 
[8, 9]. Generally, the coated QDs are stable under 
neutral or basic conditions. However, recent research 
has shown that these traditional surface coatings 
are ineffective in protecting QDs against chemical 
oxidation by reactive oxygen species [10] or against 
proton etching under strongly acidic conditions [11]. 
Thus, the fl uorescence of these encapsulated QDs is 
quickly quenched under strongly oxidative or acidic 
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conditions. It is believed that small molecules or 
ions such as hypochlorous acid (HOCl), hydrogen 
peroxide (H2O2), and protons (H+) are able to diffuse 
across the surface coating layer, causing chemical 
oxidation or etching of chalcogen atoms (sulfur, 
selenium, or tellurium) on the QD surface [10]. This 
instability is a major concern when QDs are used for 
intracellular and in vivo imaging in which reactive 
oxygen species are generated during normal cellular 
metabolism and in inflammatory responses [12 14]. 
Furthermore, this quenching problem precludes the 
use of QDs as an oral delivery agent for applications 
in the highly acidic gastrointestinal environment [15].

In this paper, we report the use of “proton 
sponge” polymers as acid-stable surface coatings to 
stabilize QD fluorescence under acidic conditions. 
Proton sponge polymers contain a large number 
of acid and base groups, and are able to buffer pH 
changes by rapidly absorbing or releasing protons [16, 
17]. Under strongly acidic conditions, their positive 
charges are believed to “repel” other protons from 
approaching the polymer surface. Here we show 
that both hyperbranched polyethylenimine (PEI) 
and its polyethylene glycol-grafted derivative (PEG-
g-PEI) are able to protect core shell CdSe /CdS /ZnS 
QDs from fluorescence quenching in simulated 
gastric fl uids (SGF, containing concentrated digestive 
enzymes at low pH). We have also examined 
the biocompatibility of the acid-stable QDs by 
using Caco-2 cells, a type of epithelial colorectal 
adenocarcinoma that is widely used to predict the 
absorption rate of candidate drug compounds across 
the intestinal epithelial cell barrier [18]. As expected, 
the cationic QDs cause moderate membrane damage, 
but their toxic effect can be reduced by PEG grafting.

1. Experimental

M a t e r i a l s .  D i p a l m i t o y l - s n - g l y c e r o - 3 -
phosphoethanolamine-N-[methoxy(polyethylene 
glycol)-2000] (DPPE-PEG) and 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC) were purchased 
from Avanti Polar Lipids, Inc. (Alabaster, AL). PEI, 
Mn=10,000 g / mol, was purchased from Sigma-
Aldrich (St. Louis, MO). Polyethylene glycol (PEG) 
grafted PEI (PEI-g-PEG) was synthesized according 

to a previously reported method [19]. Pepsin 
(porcine gastric mucosa, 882 units / mg protein) 
and pancreatin (porcine pancreas) were purchased 
from Sigma-Aldrich. Phosphate buffered saline 
(PBS)  was  purchased f rom Mediatech ,  Inc . 
(Herndon, VA). All other solvents and reagents 
were purchased from Sigma-Aldrich or Fisher 
Scientifi c (Pittsburgh, PA) and used without further 
purifi cation. Water was obtained from a Millipore 
Direct-Q UV system and had a resistivity of 18.2 
MΩ·cm in all cases. 

QD synthesis  and surface modification. 
CdSe / CdS / ZnS core-shell QD nanocrystals were 
synthesized using previously reported methods 
[11, 20]. The resulting QDs were purifi ed from the 
crude reaction mixture containing octadecylamine 
and octadecene. The crude mixture was first 
dissolved in a minimal amount of chloroform 
followed by precipitation with acetone. After 
centrifugation, the thin fi lm of QDs was dispersed in 
hexane and repeatedly extracted with methanol. After 
the fi nal washing, QDs were again precipitated with 
acetone. The purifi ed QD fi lm was then dispersed in 
chloroform for surface modifi cation. Two techniques 
were used to surface coat the QDs and transfer them 
into water micellular encapsulation and ligand 
exchange. Lipid-PEG-coated QDs were prepared 
based on the procedure reported by Dubertret 
et al. [7]. Briefly, to QDs (0.5 nmol) dispersed in 
chloroform was added lipid-PEG (1500 nmol) 
dissolved in chloroform. The chloroform was allowed 
to evaporate under vacuum and the remaining 
cake was dispersed in H2O with sonication. The 
solution was ultracentrifuged for 2 h at 100,000 rpm. 
The supernatant containing empty micelles was 
removed and the lipid-PEG-coated QD pellet was 
resuspended in H2O. Aggregates were removed by 
fi ltering the QD-lipid-PEG nanoparticles through a 
0.2 μm fi lter. Using this procedure, QDs (0.5 nmol) 
were alternatively coated with DPPE-PEG (600 
nmol) and DPPC (900 nmol), which was expected 
to increase the packing density of the hydrophobic 
barrier.  A second class of QDs with cationic 
surfaces was synthesized by ligand exchange. PEI 
or PEI-g-PEG-coated QDs were prepared according 
to the literature method [19]. Briefl y, either PEI or 
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PEI-g-PEG was dissolved in chloroform and then 
shaken with QDs in chloroform to afford ligand 
exchange with the octadecylamine on the QD 
surface. After the ligand exchange reaction, the 
chloroform was removed in vacuo and the fi lm was 
dispersed in H2O. Excess polymer was removed by 
extensive dialysis. Any remaining aggregates were 
removed by fi ltering through a 0.2 μm fi lter. 

Characterization. Cationic polymer modified 
QDs were characterized by several different 
techniques. Absorbance spectra and fluorescence 
spectra were collected on a Shimadzu UV-2401PC 
spectrophotometer (Shimadzu Scientifi c Instruments, 
Columbia, MD) and FluoroMax-2 spectrofl uorometer 
(HORIBA Jobin Yvon, Inc., Edison, NJ), respectively. 
The size of the nanoparticles was measured by 
dynamic light scattering (DLS) (Brookhaven 90plus, 
Brookhaven Instruments Corp., Holtsville, NY) and 
transmission electron microscopy (TEM) (Hitachi 
H-7500, Hitachi High Technologies America, Inc., 
Pleasanton, CA). The zeta potential of nanoparticles 
was measured on a Zetasizer Nano (Malvern 
Instruments, Ltd., Worcestershire, UK).

Gastrointestinal fluid studies. Gastrointestinal 
conditions were simulated for gastric fluid and 
for intestinal fluid based on previously reported 
protocols [21, 22]. SGF was prepared by dissolving 
pepsin in gastric control fluid (2 mg /mL NaCl, pH 
2.0) to a total concentration of 300 U /mL. Simulated 
intestinal fluid (SIF) was prepared by dissolving 
pancreatin (10 mg /mL) in intestinal control fluid 
(0.05 mol /L KH2PO4, pH 6.8). For all studies, SGF 
and SIF were used on the same day as preparation. 
To test the fl uorescence stability of each QD sample 
in SGF, the SGF (360 μL) was fi rst incubated for 5 min 
in a capped glass tube at 37 °C on a heating block 
filled with sand to ensure uniform heating. QDs 
(40 μL, 1 μmol /L) were added to the warm SGF and 
incubated for 5, 15, 30, or 60 min. Acid etching was 
stopped by neutralizing the reaction mixture with 
70 μL of 200 mmol /L sodium bicarbonate solution. 
The absorbance and fluorescence spectra of the QD 
sample were immediately recorded after neutralizing 
the sample. The observed spectral changes in the 
neutralized solutions were similar to those in the 
corresponding original etching solutions. To obtain 

the t=0 data point, 70 μL of 200 mmol /L sodium 
bicarbonate solution was added to the warm SGF 
followed by the addition of QDs; the absorbance and 
fluorescence spectra were immediately obtained. 
Control studies were performed by incubating each 
QD type in PBS at 37 °C.

Cytotoxicity studies. Caco-2 cells were purchased 
from ATCC (Manassas, VA). The cells were cultured 
in Eagle’s minimum essential medium (MEM; 
Mediatech Inc., Herndon, VA) that contained 
glucose (1 g /L), L-glutamine (2 mmol /L), and 10% 
fetal bovine serum (FBS). The cells were cultured 
and passaged according to instructions from 
ATCC (www.atcc.org). The cytotoxicity of proton-
repelling QDs was assessed by quantifying damage 
to the cell membranes. First, Caco-2 cells in their 
logarithmic growth phase were seeded on a black-
sided, clear bottom 96-well assay plate at a density 
of 3.2×104 cells /well and allowed to form a confl uent 
monolayer, over approximately 48 h. The media 
was removed and the cells were washed with PBS. 
Next, 50 μL of complete media followed by 50 μL of 
complete media containing QDs at concentrations 
of 2, 10, or 20 nmol /L was added to the cells. Triton 
X-100 and complete media were used as positive 
and negative controls, respectively. After 2 h, cell 
membrane damage was calculated by measuring 
lactate dehydrogenase (LDH) release into cell culture 
media using the Cytotox-ONETM Homogeneous 
Membrane Integrity Assay (Promega Corp., Madison, 
WI). The assay was performed according to the 
manufacturer ’s instructions. Briefly, a cocktail of 
lactate, NAD+, resazurin, and diaphorase was added 
to the cell culture media. The LDH, which is only 
released from cells with a damaged membrane, 
reacts with lactate and NAD+ to produce NADH 
and pyruvate. The NADH then reacts with resazurin 
in the presence of diaphorase to produce highly 
fl uorescent resorufi n in the enzyme-coupled reaction. 
The fl uorescence intensity in each well from resorufi n 
was measured using a BioTek Synergy-2 (Winooski, 
VT) microplate reader, equipped with 530 /25 nm 
and 590 /35 nm excitation and emission filters. 
Cytotoxicity, as measured by cell membrane damage, 
was normalized to the negative media control and 
the Triton X-100 positive control.
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2. Results

As depicted schematically in Fig. 1(a), a hydrophobic 
layer of an amphiphilic polymer or lipid coating 
on QDs is ineffective in blocking protons from 
reaching the QD surface and acid etching leads to 
lattice defects on the QD surface; these defects are 
known to cause fl uorescence quenching [10]. Proton-
sponge polymers are good candidates as proton-
resistant surface coatings because, due to electrostatic 
repulsion, the positively charged coatings should 
prevent  free  protons from reaching the QD 
surface, thus protecting QDs from acid etching, as 
depicted schematically in Fig. 1(b). The changes in 
optical absorbance and fluorescence of lipid-PEG-
coated QDs with time of immersion in an acidic 
environment simulating gastric fluids are shown in 
Fig. 2. The absorbance spectra of these QDs show a 
defi nite blue-shift from 610 nm to 604 nm in the fi rst 
exciton peak, but the magnitude of absorption (optical 
density) stays nearly constant. In comparison, the 
fluorescence emission spectra show both a blue-
shift in wavelength and a dramatic drop in intensity; 
the fluorescence is quenched by more than 99% 
after 60 min. These observations demonstrate that 
the observed fluorescence quenching of lipid
PEG-encapsulated QDs is caused by acid-induced 
etching, and not by aggregation or precipitation. This 
finding is consistent with that of Smith et al. [11], 
who showed that lipid-PEG-encapsulated QDs are 
chemically etched at pH 1 2. In contrast, in the nearly 
neutral environment of simulated intestinal fluids 
(pH 6.5 and 10 mg /mL pancreatin) or neutral PBS 
at 37 °C, the fl uorescence of lipid-PEG-encapsulated 
QDs is essentially unchanged after 3 h. 

Recent work [19] has shown that the use of 
PEI and PEI-g-PEG coatings can improve the acid 
stability of QDs. We have therefore examined the 
ability of these coatings to prevent loss of QD 
fl uorescence on immersion in SGF. As shown in Fig. 
3, the PEI-coated QDs retained over 50% of their 
fluorescence intensity after 1 h of exposure, while 
the PEI-g-PEG-coated QDs retained approximately 
70% of their initial fluorescence intensity. Both of 
these QDs have signifi cantly more stable fl uorescence 
emission when compared to lipid-PEG-coated QDs. 

Figure 1  Schematic diagrams of (a) acid-etchable and (b) proton-
resistant QDs. Acid etching leads to surface defects and fl uorescence 
quenching, as observed for QDs coated with amphiphilic polymers 
or lipids. The use of cationic “proton-resistant” surface coatings 
prevents free protons from reaching the nanocrystal surface, thus 
protecting QDs from acid-induced etching

Figure 2  Optical absorbance and fluorescence spectral changes 
showing acid-induced etching of lipid-encapsulated QDs in simulated 
gastric fl uids (pH 2).Note the blue shift in the absorbance peak (short 
dashes) and quenching of the fl uorescence signal (long dashes) with 
increasing exposure time to the acidic solution

A potential disadvantage of the PEI-coated and 
PEI-g-PEG QDs is that they are prepared by ligand 
exchange reactions [19], and are less colloidally stable 
than lipid-PEG or amphiphilic polymer-coated QDs. 

(a)

(b)
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When stored at 4 °C in aqueous solution, however, 
we found that the PEI-coated dots maintained over 
40% of their original fl uorescence intensity after one 
year. 

The cationic surfaces employed in this work 
have a large buffering capacity, which likely 
contributes to the acid stability. The zeta potentials 
for PEI and PEI-g-PEG-coated QDs at neutral 
pH are +29 mV and +22 mV, respectively. In SGF 
(pH 2), these surfaces are expected to have more 
positive charges and higher zeta potentials. Thus, 

we believe that free protons in gastric fluids are 
unable to penetrate the protective cationic shells of 
PEI and PEI-g-PEG-coated QDs. In essence, these 
“acid-resistant” coatings create a “proton buffer” 
guarding the QD core-shell structure from highly 
destructive protons. Figure 4 qualitatively shows a 
direct comparison between acid-etchable QDs and 
acid-resistant QDs that have been treated with SGF. 
The PEI-coated QDs are brightly fluorescent even 
after 60 min, whereas the lipid-PEG-coated QDs 
are largely quenched. 

Figure 3 (a) Comparison of fl uorescence signals between traditional 
amphiphilic PEG-coated QDs and proton-resistant QDs in simulated 
gastric fluids. Under similar acidic conditions, QDs coated with 
traditional amphiphilic polymers (octylamine-modifi ed polyacrylic acid) 
are both quenched and precipitated; (b) absorbance and fl uorescence 
spectra of proton-resistant QDs at different etching times. Notice that 
there is no blue-shift for either absorbance or fl uorescence and that > 
50% of the fl uorescence intensity remains after 60 min

Figure 4 Visualization of (a) traditional and (b) proton-resistant 
quantum dots before and after acid etching in SGF for 60 min. The 
initial fl uorescence images were obtained by neutralizing SGF with 
sodium bicarbonate and then adding QD solution, while the etched 
QD fl uorescence images were obtained by incubating QDs in SGF for 
60 min at 37 °C

(a)

(b)

(a)

(b)
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These acid-stable QDs are likely to find use in 
oral delivery applications because they can retain 
their fluorescence throughout the gastrointestinal 
tract and can be detected by sensitive fl uorescence 
imaging. Toward this goal, we have examined the 
biocompatibility of these QDs by using Caco-2 
cells, a type of epithelial colorectal adenocarcinoma 
that is widely used to predict the absorption 
rate of candidate drug compounds across the 
intestinal epithelial cell barrier [18]. Because the 
proton-resistant QDs are positively charged, their 
cellular toxicity is most likely to arise from cell 
membrane disruption and other damage [23]. 
Accordingly, we used an in vitro toxicity assay to 
measure membrane damage and the subsequent 
release of LDH. Figure 5 shows the membrane 
damage of Caco-2 cells upon exposure to acid-
stable QDs. At a concentration of 1 nmol / L, both 
cationic polymer-coated QDs are found to damage 
the cell membrane, resulting in a higher LDH 
release after 2 h. The PEI-coated QDs are more 
toxic than PEI-g-PEG-coated QDs, but both are 
signifi cantly less toxic than Triton X-100 (used here 
as a positive control). Overall, the cytotoxicity 
results  underscore the need to improve the 
biocompatibility of proton-resistant QDs, perhaps 
by PEG grafting or other chemical modifi cations.

3. Discussion

A n u m b e r  o f  p r o c e d u r e s  h a v e  b e e n  u s e d 
to  encapsulate  and solubi l ize  hydrophobic 
semiconductor QDs for biological applications. 
Most of these procedures are based on the use of 
small-molecule coordinating ligands, amphiphilic 
polymers, or amphiphilic lipids [4 9]. A recent 
systematic study by Smith et al. [11] has shown 
that the surface coating chemistry has a dramatic 
effect on the hydrodynamic size, fluorescence 
quantum yield, photostability, chemical stability, and 
biocompatibility of water-soluble QDs. Quantum 
dots with the smallest hydrodynamic sizes are best 
prepared by ligand exchange with hydrophilic 
molecules, but the resulting particles are less stable 
than those encapsulated in amphiphilic polymers. 
For stability against chemical oxidation, QDs should 
be protected with a hydrophobic bilayer. For stability 
in high salt buffers, it is preferable to have uncharged, 
sterically-stabilized QDs, like those coated with 
PEG. For high stability under acidic conditions, our 
results show that QDs should be protected with a 
proton-sponge polymer layer such as branched PEI. 
Gao and co-workers have also prepared QDs coated 
with a proton-sponge having a balanced mixture of 
tertiary amines and carboxylic acid groups, and have 
demonstrated that this class of QDs can be used for 
efficient small interfering RNA (siRNA) delivery 
and real-time intracellular imaging [17]. The proton-
sponge QDs are “endosomolytic” because they are 
able to absorb a large number of protons in acidic 
organelles and can cause endosomal rupture when 
a large osmotic pressure imbalance is built up across 
the organelle membrane [16]. 

The development of proton-resistant surface 
coatings also opens new opportunities for directly 
observing and studying QDs in harsh physiological 
environments. In particular, acid-stable QDs could be 
used as model probes to predict the oral absorption 
and biodistribution of therapeutic nanoparticles. 
Fluorescence emission of acid-stable QDs would 
be relatively stable in the gastrointestinal tract, 
specifically in the stomach, where the pH can 
be as low as 1 2 [15]. Therefore, the uptake and 
biodistribution of orally administered nanoparticles 

Figure 5 Cellular cytotoxicity of proton-resistant QDs measured 
by LDH release in Caco-2 cells as a result of membrane damage. 
Triton X-100, a cell permeabilizing agent, was used as the positive 
control and represented the maximum possible LDH release (100% 
LDH). The cell culture media was used as the negative control (0% 
LDH release)
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could be tracked in real time.Therapeutic delivery 
via the oral route is the preferred method for drug 
administration because it is convenient and avoids 
painful, repeated injections. Oral delivery of many 
pharmaceuticals, including anticancer cytotoxic 
agents, is limited because of their low bioavailability 
[24, 25]. The poor bioavailability of orally delivered 
therapeutics is due to their degradation in the highly 
acidic and enzyme-rich gastric fluids, especially for 
bioactive pharmaceuticals [26, 27], and their poor 
intestinal absorption [24, 28]. Polymers sensitive to 
pH changes, such as enteric methacrylate coatings, 
have been used to improve the gastric stability 
of therapeutics because these polymers become 
hydrophobic at low pH and entrap the desired 
therapeutic compound [29 32]. Above a defined 
dissolution pH, usually between pH 4 and 7, the 
polymer ionizes and dissolves releasing free drug in 
the large or small intestine. Although this decreases 
degradation of the drug in gastric fluids, the drug 
must still be absorbed through the intestinal barrier 
and survive fi rst-pass liver metabolism. Nanoparticle 
therapeutics offer a promising benefi t to oral delivery 
because they can be internalized by cells through 
pinocytosis or by adsorptive / receptor-mediated 
endocytosis, thereby avoiding the P-glycoprotein 
efflux pumps and promote systemic circulation 
[33 36]. In addition to transcytosis, the size of 
nanoparticles renders them ideal particles to exploit 
the highly phagocytic M-cells of gut-associated 
lymphatic tissue (GALT) for potential vaccine 
delivery [21, 37 40]. 

The delivery of nanoparticles can be monitored in 
vivo and in vivo by both qualitative imaging methods 
such as electron and fluorescence microscopy [40
42], and by quantitative chemical and biochemical 
methods such as  spectrophotometry,  l iquid 
chromatography, elemental analysis, immunoassays, 
and reverse transcriptase polymerase chain reactions 
(RT-PCR) [21, 32, 35, 40, 43]. Chemical methods 
and therapeutic response studies give important 
quantitative endpoint information, but do not address 
the biodistribution mechanism. Electron microscopy 
(EM) provides detailed structural information, but 
cannot provide real time information on nanoparticle 
biodistribution nor can it provide reliable data 

for nanoparticles that are not electron dense. 
Experiments implementing fl uorescence imaging and 
microscopy techniques often utilize nanoparticles 
that are loaded with small organic dyes. Since these 
dyes can be chemically cleaved or leached from the 
nanoparticle, they may not reliably report the location 
or concentration of the nanoparticles. In this work we 
have reported early results on two acid-stable QDs in 
simulated gastrointestinal fluids, and these studies 
are an important step towards the development of 
nanoparticle agents that can effectively cross the 
gastrointestinal tract for imaging and therapeutic 
purposes. 

4. Conclusions

We have reported the development of proton-
resistant QDs based on the use of proton-sponge 
polymer coatings for potential applications in harsh 
physiological conditions, especially the highly 
acidic gastric environment. In contrast to the rapid 
fluorescence quenching of traditional QDs in acid, 
both PEI and PEI-g-PEG-coated QDs show excellent 
fl uorescence stability in simulated gastric fl uids. This 
effect is believed to arise from a proton buffering 
layer that prevents free protons from reaching the 
QD surface, thus protecting QDs from acid-induced 
etching. Due to their colloidal and fluorescence 
stability in highly degradative gastric fl uids, proton-
resistant QDs have promise as a new class of 
nanoparticles for oral delivery applications. Future 
work will need to minimize the cellular toxicity of 
proton-resistant QDs. 
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