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Abstract

In this study, the interactions between egg yolngte and soybean lecithin and
their emulsion properties were investigated. Fay gglk granule, the increase of
solubility and negative zeta-potential and decreasehydrophobicity could be
observed with the increase of lecithin concentratjoindicating the interactions

between granule protein and lecithin. Results fthenz-average particle size and the

AFM image showed that the increase of solution pid addition of lecithin could
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destroy the aggregated structure of the egg yodnge. The disrupted granule
exhibited better emulsion stability than that ofiveagranule due to the higher surface
charge and lower particle size. Notably, appropriatidition of lecithin (less than
0.25%) would be conducive to the formation of higgable emulsions by modestly
reducing the contact angle, while extra lecithino(enthan 0.50%) would induce
excessive substitution of granule protein by coitipet adsorption, leading to

destabilization of the O/W emulsions via surfactaiuced depletion flocculation.

Keywords: egg yolk granule; soybean lecithin; aggted state; competitive

adsorption; emulsion stability

1. Introduction

Emulsion system has received much attention inntegears as an important
vehicle for delivering bioactive substances. Itaisdispersion system formed by
stabilizing two incompatible solutions with emuisit or particles, which can
improve the stability and bioavailability of fatisble nutrients, and has a good
application prospect in the health food industryc@¥ements, et al., 2016). Emulsion,
a thermodynamic unstable system, will undergo ifitation, flocculation,
aggregation and Oswald maturation over time (Saletral., 2014). The practical
application of a single macromolecule or small roole emulsifier is not ideal.
Interfacial film formed by the small molecule emfiés is weak and the process is
reversible, and the spatial repulsion effect is kyes® that the interface film cannot

effectively resist the coalescence between the sowl droplets. Moreover,
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adsorption of macromolecular emulsifier does namgletely inhibit the Ostwald
ripening process (Tcholakova, et al., 2008). Hovpriepare a highly stable emulsion

embedding system is a challenging technical problem

Hen’'s egg yolk is known as excellent food-derivadutsifier and plays an
important role in many food products such as mag®®) salad dressings, baked
food and ice cream (R. E. Aluko & Mine, 1997). latural state, egg yolk is a
supramolecular assembly composed of the basic ohytslk spheres and the vitelline
membrane with multiple emulsifier complex charasters, providing high stability
for nutrient inside (Hsu, et al., 2009). The yatikere is an oil storage organelle in the
egg yolk, and the vitelline membrane is a compasiterface composed of lecithin
(small molecule emulsifier), low density lipopratdibiopolymer emulsifier) and egg
yolk granules (interface adsorbing protein parsiflevhich can effectively inhibit
lipid oxidation. However, the process of processargl shearing will cause the
natural yolk spheres to disintegrate into threespbaincluding yolk granule phase,
plasma phase and gas-water interface adsorptioar, lagsulting in oxidative

degradation of some fat-soluble nutrients (Marcohn2013).

Hen egg yolk can be easily fractionated by simpletidn and centrifugation
into two major parts, the supernatant and the deanvithout any denaturation of the
protein (Laca, et al., 2010). The supernatantswaddor about 93% of yolk lipids and
50% of yolk proteins, while the granules accoumt@ of the remaining yolk lipids
and 50% of yolk proteins of the remaining egg y(arc Anton, 2013). Granules

contain less lipids and cholesterol and more pnstéhan yolk and plasma. Granules
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are consisted of circular complexes with diamessging from 0.3 to gm. At low
ionic strength (0.17 M NaCl), native granules takee form of non-soluble
HDL-phosvitin aggregates through phosphocalcic gegdbetween seryl residues of
HDL and phosvitin (Naderi, et al., 2017). It hasbheeported that HDL has good
emulsifying property, and can be effectively useddonstructing the delivery carrier
of nutrients (Zhou, et al., 2018). Furthermore, phitin has a strong capacity of iron
chelation that could be used for antioxidant puego#\t about 80% solubility, yolk,
granules and plasma have similar emulsifying aotiwiand granules have the best
emulsion stabilization (M Anton & Gandemer, 199Fyg yolk granules are also
considered for the so-called ‘Pickering’ stabiliaat effect of emulsion droplets,
because of their particle-like structure (Raynenle 2014). It is known that particles
at interfaces stabilize emulsions better than smadllecules due to the high
desorption energy upon adhesion to oil-water-iat®$. So it is meaningful for food
industry to use egg yolk granules as a replacevhufle egg yolk due to its multiple
positive features including low cholesterol, emfyisig ability and oxidation
resistance. However, their emulsifying ability cahbe fully exerted in nature state
due to its poor emulsion stability caused by lgrggticles and poor solubility, which

greatly limits the application of the egg yolk guées as emulsifier.

Lecithin is an important nutrient surfactant witkcellent hypolipidemic effect
(Christopher, 2015) and emulsifying, diffusing anfiltrating properties (Asomaning
& Curtis, 2017). A phospholipid-protein binary colep (formed by hydrophobic

interaction between a phosphatidylcholine molecutel a hydrophobic region of
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protein) displayed excellent dispersing and emyitsif properties (Gao, et al., 2017).
Previous study also found that the interaction betwprotein and lecithin affected
the structure and interfacial adsorption properiethe protein, thereby enhancing its
emulsifying ability and affecting the microencadidn properties of the proteins (S.
Wang, et al., 2017). Likewise, lecithin in the \litee membrane also plays an
important role in the emulsification performance egg yolk. In the process of
formulating the composite interface, lecithin caffedively reduce the oil-water

interfacial tension and promote the formation ofuésion. However, the interaction

mechanism between lecithin and egg yolk granuleslaa effects on the properties of

the emulsion are still unclear.

The aim of this study was to investigate the irteoas between egg yolk
granule proteins of different aggregation stated ktithin. Also, the competitive
adsorption and synergistic stabilization effectsgodinule proteins and lecithin on
oil/water interface were studied. In addition, te&tionship between physiochemical
properties of protein-lecithin complex and the 8iigbof emulsions were discussed.
Microstructure, surface tension and interface gutsmr properties of granule-lecithin
complex as well as the emulsion stability index #me main parameters that were

investigated.

2. Materials and methods

2.1. Materials

Fresh hen eggs were provided by the Kangde Biadbdrroducts Co., Ltd.
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(Nantong, Jiangsu, China). Soy lecithin was puretidsom flyyed biotech Co., Ltd.
(Suzhou, Jiangsu, China). For the preparation@ethulsion, Arowana sunflower oil
was bought from a local supermarket and used witHioxaher purification. The
sodium 8-anilino- 1-naphthalenesulfonate (ANS) @odine serum albumin (BSA)
were purchased from Sigma-Aldrich (St. Louis, MCBA). All other chemicals used

were of analytical grade (Sinopharm Chemical Retsg€n., Shanghai, China).

2.2. Preparation of egg yolk granules

Egg yolk granules were prepared according to tkeeipus method (Laca, et al.,
2010) with slight modification. Egg shell was braokeanually and egg yolk was
separated from the albumin by carefully rolling foter paper to ensure that no egg
white proteins were mixed up. The egg yolk conigas collected in a beaker after
vitelline membrane was ruptured with a tweezer.réater, the egg yolk material was
mixed with deionized water (1:1.5 v/v). Then the pHthe diluted egg yolk was
adjusted to 7.0 with NaOH (1 M) and it was keptrovght at 4[], followed by
centrifuging for 45 min at 4 and 8,000 g to separate into plasma (supernaadt)

granule (precipitate).

2.3. Preparation of egg yolk granules emulsions

Egg yolk granules were diluted to protein concdiraof 1% (w/v) with
distilled water and soy lecithin was added into tir@nules dispersion to final
concentration of 0.00%, 0.10%, 0.25%, 0.50% and%.0followed by stirring at

ambient temperature for 2 h using magnetic stirrifigen the pH of the aqueous
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mixtures was adjusted to 7.0 and 9.0. The aquespgrdions were prepared via two
homogenization steps by pre-homogenizing firstly Zamin at 11,000 rpm using an
Ultra-Turrax blender (IKA T25 Basic, Staufen, Genypequipped with a 12 mm
diameter head and then homogenizing at 50 bar farm&s using APV1000
homogenizer (APV Co., Crawley, U.K.). Consistenthwihe preparation of aqueous
dispersions, the oil/water emulsions with 10% obwana sunflower oil and 90% (wt.)
of aqueous dispersions were prepared by the sanmeodemization process.
Furthermore, 0.02% (w/v) of sodium azide as amaintbbial agent was added to the

resulting emulsions and stored at/4intil analysis.

2.4. Protein solubility

Protein solubility was measured by the method pnesly described with a slight
modification (Abugoch, et al., 2008). Each prots@ample was diluted and then
centrifuged at 10,000 g for 20 min at'4 The supernatants were collected and the
protein content was assayed by the biuret methotlibflity was expressed as the

ratio of protein content in supernatant to theltptatein content in sample.

2.5. Particle diameter and zeta-potential

The droplet size distribution and the electricargfe (zeta-potential) of egg yolk
granule dispersions and emulsions were determisatyla Zetasizer Nano Brook
Omni instrument (Beookhaven Instruments, USA) at(25The dispersions and
emulsions were diluted with deionized water andildmyated for 60 s before

measurement. Particle sizes were reported as tlaweiage particle diameter
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calculated from the particle size distribution. Tmoluchowsky mathematical model
was used to convert the electrophoretic mobilityasueements into the zeta-potential

values.

2.6. Atomic force microscopy (AFM)

The microstructure of the egg yolk granule or gtedecithin complex was
observed using an atomic force microscope (Dimengton model, Bruker). The
samples were diluted togy/mL concentration of protein with deionized watead 10
uL of the diluted sample was immediately spread drgshly cleaved mica sheets to
dry naturally. The tapping mode was chosen ancadt|3 areas of each prepared
sample were scanned, then a representative imageselacted from at least 10

images.

2.7. Fluorescence spectra

Fluorescence spectra of samples was measured sgrdodthe procedure of
Wang et al. with a slight modification, which us8eanilo-1-naphthalenesulfonic
(ANS) as a probe to interact with hydrophobic megton the surface of protein to
give a fluorescent signal (B. Wang, et al., 199%e sample solutions of egg yolk
granule with/without soy lecithin were diluted (@@) to avoid interference of
turbidity to the test. 2QL of ANS solution (8 mM) dissolved in phosphatefeuf(50
mM, pH 7.0) was added to 4 mL of each protein dsipa. Then the mixture was
vortexed for 20 s and kept in the dark for 20 nkfuorescence scan curves were

recorded at emissions from 400 to 600 nm excited whvelength of 390 nm using
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F-7000 spectrofluorimeter (Hitachi, Japan). Thessimon and excitation slits were set

to 5 nm, and the measurements were performed at 25
2.8. Contact angle

Contact angles of samples were measured at! 2%/ a drop shape analyzer
(DSA25, Kruss, Germany). i of the sample was taken and dropped on a glaks sl
To eliminate interference, the sample was equildatdor 5 min and then measured.

At least six parallel measurements were takendohesample.
2.9. Creaming index

10 mL of each emulsion was transferred into a glaas immediately after
preparation to measure the change of the creamuxiof different emulsions over
time. The emulsion samples were tightly sealed thed stored for 7 days at room
temperature. Emulsions separated into a creamendt &ythe top and a transparent
serum layer at the bottom during storage. The é&xdErreaming was characterized
by creaming index (Cl, %), which was calculated by

Cl% =$><1OO
He (1)

Where, H was the total height of the emulsions anglviths the height of the

serum.
2.10. Protein adsorption fraction (AP)

Percentage of adsorbed proteins was determinedrdmegoto the method
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described by Chang et al. with some modificatiddbang, et al., 2016). Emulsions
(2mL) were centrifuged at 10,000 g for 30 min at 4After the centrifugation, three
phases were observed: a cream layer at the tdpediube, an aqueous phase of the
emulsion, and sediment at the bottom. The creanseplaas moved to collect the
agueous phase and sediment. The subphase wadugguriagain to remove the
adsorbed proteins completed. This process wastezp8aimes and the final aqueous
phase and sediment were collected to measurepattin content (Iy). The weight

of protein added into the emulsions was recordedvias(mg). The AP% was

calculated as follows:

AP%=M><100
Ml

(2)
2.11. Microstructure of emulsion droplet

The microstructure of emulsions was visualized gigihan Axiolab A reflected
light-microscope (Zeiss, Berlin, Germany) with ax@bjective lens. The emulsions
were diluted with deionized water at a ratio ofQL{(¥/v) before observation. About 10
uL of the diluted emulsion was loaded on the micopecslide and carefully covered
with a coverslip. The photomicrographs were captwatter being equilibrated for 2
min. Representative images of microscopic imagimgeachosen from at least four

similar images.
2.12. Statistical analysis

All the measurements were performed at least pligates, and the data were
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expressed as mean + SD. An analysis of varianceON was carried out using the
software SPSS version 17.0 for Windows (SPSS I6ticago). The Duncan’s

multiple-range test was used to evaluate signitieasf difference (p < 0.05).

3. Results and discussion

3.1. Properties of egg yolk granule-lecithin comigodispersion

3.1.1. Protein solubility, zeta-potential and pak#i size

Protein solubility is an important functional profyethat affects the potential
application of protein in food processing. As shownTable 1, at pH 7.0, the
solubility of native egg yolk granule was only 1%6The compact granule structure
of yolk granule linked by phosphocalcic bridges m#cdhard to be hydrated (Naderi,
et al., 2017). When the pH was elevated to 9.0,stlebility of granule protein
increased to 80.18%. The increase in the numbeanegative charges (COO-) at
alkaline condition could promote electrostatic lemn and dissociation of granules
(Causeret, et al., 2006). Regardless of the agtpegaate of granule, the solubility of
granule dispersion further increased as the lecitbncentration of the aqueous phase
increased. The solubility of the native (pH 7.0y alisrupted (pH 9.0) granule protein
increased to 72.53% and 97.45% respectively witheasing lecithin concentration

up to 1.00%.

The zeta-potential of the protein can reflect tindase charge of the protein. For
proteins existing in the form of colloidal partislen aqueous solution, the surface

charge played an important role in the disperslwaracter of these particles (Chen &
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Soucie, 1985). Table 1 showed that the negativaeval zeta-potential in protein
solution at pH 9.0 was significantly higher thamttlof pH 7.0. This phenomenon
could be attributed to the increase in the numbeegative charges (COO-). Besides,
the incorporation of lecithin could enhance protesarface electronegativity,
regardless of solution pH. This result may be eglai the liberation of phosuvitin
from granules due to continual increase of soltyiliCastellani, et al., 2006;

Damodaran & Xu, 1996).

Particle size is another important index of pagtsfability and can usually affect
emulsifying properties. The native granule at pB Was the largest with z-average
particle size of 1905.67 nm and polydispersity dé€0.47, showing that the native
granule possessed a wide distribution of particte.sAt pH 9.0, the granule was
disrupted, which could be observed from the deeredsz-average particle size to
126.10 nm. In addition, a significant (p < 0.05fld®e of z-average particle size was
found with the lecithin concentration increasedrfr6.00% to 1.00%. Our previous
study proved that the changes in the particle sizgranule protein dispersion were
directly related with the protein aggregation stéte et al., 2018). It can be
concluded from the above results that both incréageH and addition of lecithin
could effectively decrease the particle size of egik granule by increasing

solubility and surface charge.

3.1.2. Atomic force microscopy

In order to characterize the morphology of yolkrgra, the microstructure of
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the samples was observed by atomic force microsdegy 1 showed the 2-D AFM
images of the granules (pH 7.0 and pH 9.0) witled#int concentrations of lecithin
(0.00%, 0.25% and 1.00%). Dramatic changes ingarmorphology were observed
in various samples, wherein it was observed theigies at pH 7.0 without lecithin
presented irregular aggregated state with greatgoar sizes. At pH 7.0, the addition
of lecithin gradually reduced the size of the mdes, but large particles still existed
and the dispersion coefficient increased. LikewaepH 9.0, the particle dissociated
and the patrticle size became smaller and almokirge particle was observed. These
observations were roughly in line with the changégarticle diameter of egg yolk
granule (Table 1). Therefore, the disintegratiore@d yolk granule aggregate at high

pH and in the presence of lecithin was intuitivetyfirmed by the AFM pictures.

3.1.3. Fluorescence spectra

Protein hydrophobicity depends on its exposureyafréphobic domain, which
has an important influence on the emulsifying amerfacial properties of proteins.
Fig. 2 showed the changes in fluorescence intensiggg yolk granule (pH 7.0 and
pH 9.0) at different concentrations of lecithin vihe wavelengthl). Compared with
disrupted granule (pH 9.0), the native granule {8) exhibited higher fluorescence
intensity. Low hydrophobicity of granule protein l@gh pH may be ascribed to its
high surface charge and solubility as shown in &dblThe increase of solution pH
contributed to the increase of surface charge, mgakihe surface of the protein
charged and became more hydrophilic, which incibas®ubility and decreased

hydrophobicity. Our previous study has shown that sould increase the surface
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hydrophobicity of yolk proteins while improving sdlility. This result seems to be
related to the charge shielding effect of salt i¢bis et al., 2018). So the surface
hydrophobicity of the protein was closely relatedthie surface charging property of
the protein. The dispersion of granule showed ariools decrease in fluorescence
intensity with lecithin concentration increased. eThinteractions between
phosphatidylcholine and hydrophobic region of globeasily occurred (Ohtsuru &
Kito, 2014). Adding lecithin into egg yolk granuldispersion might cover and bury
the surface hydrophobic amino acids of granulegimptwhich led to the decrease of
fluorescence intensity. This might also be a redsothe increase of egg yolk granule
solubility in presence of lecithin. It has beengeed that there were relatively few
hydrophobic residues on the surfaces of highlyldelproteins (Venyaminov, et al.,
2010). The solubility of protein depended, to a géar extent, on the
hydrophilicity/hydrophobicity balance of protein faoules, and was related to the

amino acids composition on the surface of protBigdlow, 1967).

3.1.4. Contact angle

Contact angle measurement is a straightforward t@agvaluate the surface
tension of the particle that is related to the fation ability of interface membrane.
The lower the static contact angle is, the lower ititerface tension is. As shown in
Fig. 3, the yolk granule in its natural state (p)#&xhibited the largest contact angle
among samples, and granule in the disrupted spéte9(0) behaved lower contact
angle. This result could be ascribed to the ragidrease in surface hydrophobicity

and increase in negative charge of granule protatnsigh pH. Furthermore, the
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increase of the lecithin concentration led to atgereduction of the contact angle of
granule/lecithin dispersions. Interestingly, whéie tecithin concentration increased
to more than 0.50%, the contact angle of dispessainpH7.0/9.0 started to decline
from 29.10°/25.20° to 26.80°/23.10°. This phenonmewas similar to the results of a
previous study, which has reported that milk pragepreferentially adsorbed to
oil-water interfaces at low surfactant levels doetheir much higher adsorption
energy per molecule, but at higher levels surfastareferentially adsorbed because

they pack more efficiently than proteins (Dickins®Tanai, 1992).

3.2. Properties of egg yolk granule-lecithin comygosmulsions

3.2.1. Creaming stability

The creaming index and digital images of emulsiprepared by 1% of yolk
granule under different lecithin concentrationseveinown in Fig. 4. In the absence of
lecithin, emulsion stabilized by native granule (pH) start creaming after 1 day of
storage, while emulsion prepared with the disrugteshule (pH 9.0) began to stratify
on the third day. This phenomenon indicated thetdissociation of yolk granules
caused by pH increase was beneficial to emulsifgtapility. At the same lecithin
concentration, emulsions formulated with disrupgeanules had a significantly (P <
0.05) smaller creaming index than those prepardil mative granules. Whatever the
state of granules (native or disrupted), the erfyitgj stability of egg yolk granules
increased first and then decreased with the intrgdscithin proportion. Emulsions

containing 0.25% lecithin concentration showed thest emulsifying stability.
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Notably, no droplet-free phase (serum layer) at lb&tom was observed in the
emulsion prepared by disrupted granules with 0.2&€ithin after 7 days of storage
(as shown in Fig. 4d). This can be presumed thahwje dissociation caused by
appropriate lecithin could improve emulsifying sl but excessive incorporation
of lecithin would result in a decrease in emulsifyiactivity, which may be resulted
from the competitive adsorption of egg yolk granaihel lecithin at interface. It could
be directly seen that, the emulsion prepared b@%.0ecithin did not exhibit high
creaming stability as expected, indicating thae detithin was not enough to stable

oil droplets.

3.2.2. Particle size and zeta-potential of freshuksions

The particle size and charge of the emulsion aporant indicators influencing
the stability of the emulsion. The mean particlandeter and zeta-potential of
emulsions prepared by egg yolk granules at pH Q@&h various concentrations of
lecithin added were displayed in Fig. 5. The enamsi prepared with disrupted
granules (pH 9.0) had smaller average diameterhagioer negative zeta-potential
value than those prepared with native granulesqjihi Consequently, the emulsions
prepared by disrupted granules possessed a betitgsifing ability than native
granules. For both states of granules, signifiq@nk 0.05) decline of the mean
particle diameter and increase of negative zeterpial value were found as the
lecithin concentration was raised from 0.00% to5@2 This might be due to the
further dissociation of egg yolk granule aggregatsiate caused by addition of

lecithin. The results indicated the coadsorptiogadk granule protein and lecithin on
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the interface. Generally, high amount of surfactamnere needed to form small
droplets due to its large specific surface areae(&uZzhong, 2014). Previous studies
have reported that the interactions between prateih lecithin might lead to the
reduction of interfacial free energy as a resulthef protein-lecithin complex formed
at interfacial films, facilitating the decreasefat droplet size (Patino, et al., 2001).
However, the mean diameter showed no significardanghs when the lecithin
concentration was further increased from 0.50%.60%. Meanwhile the negative
zeta-potential value started to decline. The deewaregative zeta-potential value
could be assumed that yolk granule protein was ugifd displaced by lecithin
because of competitive adsorption in the oil/watézrfacial layer and more lecithin
were aggregated at the interface, leading to tleddshg of some negative charged

groups of granule proteins (Matsumiya, et al., 2014

3.2.3. Protein adsorption fraction of fresh emutso

The protein adsorption fraction of emulsions predaby egg yolk granules at
pH 7.0/9.0 with various concentrations of lecitholded was displayed on Fig. 6. The
results showed that, at pH 7.0, the adsorbed pratemtent was 75.58%, possessing
larger adsorption amount than that at pH 9.0 (2%)74it indicated that granule
protein was more favorable for interface adsorptamen negative zeta-potential
value was low, while the high electrostatic reputspf protein molecules at higher
pH was not conducive to stable adsorption of gmamubteins on the interface film
(Rotimi E. Aluko & Mine, 1998). For native granuliae protein adsorption fraction

decreased from 75.58% to 16.27% as the lecithicemmnation increased from 0.00%
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to 0.50%, implying the occurrence of competitivepliacement at oil-water interface.
When the lecithin concentration was higher tharO@5the interfacial adsorption
protein concentration no longer decreased, indigatiat the adsorption of lecithin at
the interface was saturated in the form of inconeptisplacement (Yi, et al., 2019).
At relatively low surfactant concentrations, sutéat molecules adsorbed to the
interface and formed small islands of surfactacaied within the protein network.
As the surfactant concentration increased, the eifz¢he surfactant-rich regions
expanded, restricting the protein network to a fenalurface area. At relatively high
surfactant concentrations, the protein region ased appreciably in thickness and
eventually the protein molecules were completelgpldiced from the interface
(McClements, 2004). Therefore, granules organizemhdividual aggregate separated
by lecithin and these granules spread at the atterfeading to the formation of a
continuous protein-lecithin membrane (Destribatsle 2014). For disrupted granule,
there was less significant (p > 0.05) decreaséeniriterfacial protein content of the
emulsion as lecithin concentration ranged from @0 0.25%. With a further
increase of lecithin concentrations, protein adsonpfraction declined significantly
(p < 0.05). The result indicated that small amoahtlecithin adsorbed onto the
surface of emulsified oil will be conductive to tipliysical stability of emulsions
without excessive displacement of interface pratend confirmed the synergistic
effect of granules and lecithin on the stability efulsions. At higher lecithin
concentrations, large amount of proteins were diga from the droplet surfaces by

competitive adsorption, resulting in instability ahe O/W emulsions by
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surfactant-induced depletion flocculation (showrrig. 4).

3.2.4. Microstructure of emulsion droplet

Observing the microstructure of the emulsion afed#nt concentrations of
lecithin can better understand the stabilizing afigf the protein-lecithin composite
emulsion. The microstructure pictures of emulsigmepared by granules at pH
7.0/9.0 with different concentrations of lecithidded were presented in Fig. 7. In the
absence of lecithin, emulsion prepared from nagirenule showed coarse and large
oil droplets, and the emulsion droplets gather ttogreto form larger aggregates
(about 1700 nm). This might be due to the lack udfigent electrostatic repulsion
between the droplets to prevent the emulsion frimoctilation. However, emulsion
prepared from disrupted granules does not exhibitc@ilation and the size of
emulsion droplets was about 550 nm, which may bébated to its higher surface
charge. At very low concentration of lecithin (2% the particle size of the fat
globule decreased to 400 nm and the emulsion dsogladually showed a uniform
distribution. With further increase of lecithin c@ntration, some large fat globules
were observed in the emulsion. The possible re&sothe above phenomenon was
that when the concentration of lecithin was low2836), the addition of lecithin
dissociated the aggregate structure of egg yolkudeaand lecithin and granule
protein were adsorbed to the interface and joindlgluced the interfacial tension
(contact angle), thereby improving the stability thle interface membrane and
reducing the size of the oil droplets (Leong, et aD11). However, with further

increase of lecithin concentration, most of thetgrs on the interface membrane
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were replaced by lecithin when the concentratioleathin was above 0.50%. At this
point, continuous increase in the amount of lenithoes not change the interfacial
protein content (Fig. 6). A large amount of unatisbte lecithin may cause repulsive
flocculation between oil droplets, leading to tlggegation of small oil droplets to
form large oil droplets (Matsumiya, et al., 201A% a control, emulsion prepared by
1.00% lecithin showed larger fat globules (abou®Qllm), indicating the high

emulsifying efficiency of granule proteins-lecithtomplex. The addition of a small
amount of lecithin showed a positive effect on foemation of emulsions, but

excessive lecithin triggered repulsive flocculatithhus leading to the instability of the
emulsions. In a word, the microstructure of the ksion could well reflect the

creaming phenomenon of the emulsion, and the agtioegof the emulsion droplets

easily led to the stratification.

4. Conclusions

This study investigated the interactions betweemngje proteins in different
aggregation states and lecithin concentrations, thedcorresponding emulsifying
properties. The results demonstrated that the mlisdugranule (pH 9.0) exhibited
higher solubility and negative value of zeta-paentccompanied by lower surface
hydrophobicity and particle size than the nativangite (pH 7.0), which contributed
to the smaller surface contacting angle and enulstability. As the lecithin
concentration increased, the protein solubility #r@lnegative value of zeta-potential
of both egg granules were further increased, itrashto that, surface hydrophobicity,

particle size and contact angle decreased. The Aidde showed that the increase of
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solution pH and addition of lecithin could destitbg aggregated structure of the egg
yolk granule and dissociation of aggregate stre@ctuvas beneficial to the
improvement of emulsifying ability. The emulsioralsility of egg yolk granules
showed a trend of increase first and then decrease the increase of lecithin
concentration. Appropriate addition of lecithinggethan 0.25%) could be helpful in
the formation of high stable emulsions with lowtpde size by further dissociating
the aggregate structure and slightly reducing thregact angle and increasing surface
net charge. However, extra lecithin (more than @pQvould induce excessive
substitution of granule proteins by competitive@a@sion, leading to instability of the

O/W emulsions by surfactant-induced depletion fidaton.
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Tablel

Protein solubility (%), zeta-potential (mV), z-amge particle size (nm) and

polydispersity of egg yolk granules at pH 7.0/pH) @s affected by lecithin

concentrations (0.00-1.00% w/v).

Lecithin . : Z-average
: Protein Zeta-potential . - . .
concentration solubility (%) (mv) particle size  Polydispersity
(%) (nm)
pH 7.0/pH 9.0

0.00 1.56+0.00e/ -20.46+0.50d/ 1905.67+14.29a/ 0.47+0.02d/

' 80.18+0.35e  -32.00+£0.78c  126.10+3.39a  0.81+0.01a
0.10 7.70+£0.70d/  -29.15+0.25c/ 372.73+6.81b/ 0.55+0.01c/

' 85.86+0.93d -35.39+0.04b  110.93+2.65b  0.50+0.01b
0.25 11.56+£0.81c/ -32.41+0.21b/ 349.20+3.38c/ 0.64+0.01b/

' 89.80+0.47¢c  -35.96+0.07b 94.57+0.24c 0.44+0.01d
0.50 20.08+0.35b/ -33.04+0.11b/ 321.70+£3.80d/ 0.66%0.02b/

' 95.23+0.23b  -37.90+0.99ab  83.80+3.28d 0.47+0.00c
1.00 72.53+3.49a/ -35.29+1.12a/ 133.90+1.95e/ 0.79+0.02a/

' 97.45+0.81a -39.21+0.88a 75.11+0.48e 0.43+0.00d

Different letters indicate significant differenqg< 0.05) (mean = SD, n = 3).
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Highlights

M The increase of solution pH and addition of lecithin could dissociate the egg yolk granule.

M Dissociation of egg yolk granule was beneficial to emulsion stability.

M Excessive displacement of interface granule proteins by lecithin resulted in stratification.
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